10 research outputs found

    OpenFlowMon: a fully distributed monitoring framework for virtualized environments

    Get PDF
    Proceedings of: 2021 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), 9 November 2021, Heraklion, Greece.Network monitoring allows a continuous assessment on the health and performance of the network infrastructure. With the significant change on how networks are deployed and operated, mainly due to the advent of virtualization technologies, alternative monitoring approaches are emerging to provide a finer-grained flow monitoring to complement already existing mechanisms and capabilities. In this paper, we proposed and developed an Open-Source Flow Monitoring Framework (OpenFlowMon), a fully distributed monitoring framework implemented solely with open-source solutions. This framework is used to assess the performance and the overhead introduced by two different flow monitoring approaches: (i) switch level and (ii) compute node level monitoring. Results show that monitoring at compute node level not only reduces the overhead but also mitigates a potential complex post-processing in east-to-west traffic.This work has been (partially) funded by H2020 EU/TW 5G-DIVE (Grant 859881) and H2020 5Growth (Grant 856709)

    An experimental publish-subscribe monitoring assessment to Beyond 5G networks

    Get PDF
    Collection: Wireless Technologies for the Connectivity of the Future.The fifth generation (5G) of mobile networks is designed to accommodate different types of use cases, each of them with different and stringent requirements and key performance indicators (KPIs). To support the optimization of the network performance and validation of the KPIs, there exist the necessity of a flexible and efficient monitoring system and capable of realizing multi-site and multi-stakeholder scenarios. Nevertheless, for the evolution from 5G to 6G, the network is envisioned as a user-driven, distributed Cloud computing system where the resource pool is foreseen to integrate the participating users. In this paper, we present a distributed monitoring architecture for Beyond 5G multi-site platforms, where different stakeholders share the resource pool in a distributed environment. Taking advantage of the usage of publish-subscribe mechanisms adapted to the Edge, the developed lightweight monitoring solution can manage large amounts of real-time traffic generated by the applications located in the resource pool. We assess the performance of the implemented paradigm, revealing some interesting insights about the platform, such as the effect caused by the throughput of monitoring data in performance parameters such as the latency and packet loss, or the presence of a saturation effect due to software limitations that impacts in the performance of the system under specific conditions. In the end, the performance evaluation process has confirmed that the monitoring platform suits the requirements of the proposed scenarios, being capable of handling similar workloads in real 5G and Beyond 5G scenarios, then discussing how the architecture could be mapped to these real scenarios.This work was partly funded by the European Commission under the European Union's Horizon 2020 program-Grant Agreement Number 815074 (5G EVE project). This work was also partly funded by the Community of Madrid, under the grant approved in the "Convocatoria de 2017 de Ayudas para la Realización de Doctorados Industriales en la Comunidad de Madrid (Orden 3109/2017, de 29 de agosto)", Grant Agreement Number IND2017/TIC-7732. The paper solely reflects the views of the authors. Neither the European Commission nor the Community of Madrid are responsible for the contents of this paper or any use made thereof

    Opportunities and Challenges of Joint Edge and Fog Orchestration

    Get PDF
    Pushing contents, applications, and network functions closer to end users is necessary to cope with the huge data volume and low latency required in future 5G networks. Edge and fog frameworks have emerged recently to address this challenge. Whilst the edge framework was more infrastructure focused and more mobile operator-oriented, the fog was more pervasive and included any node (stationary or mobile), including terminal devices. This article analyzes the opportunities and challenges to integrate, federate, and jointly orchestrate the edge and fog resources into a unified framework.This work has been partially funded by the H2020 collaborative Europe/Taiwan research project 5G-CORAL (grant num. 761586

    Monitoring Platform Evolution towards Serverless Computing for 5G and Beyond Systems

    Get PDF
    Fifth generation (5G) and beyond systems require flexible and efficient monitoring platforms to guarantee optimal key performance indicators (KPIs) in various scenarios. Their applicability in Edge computing environments requires lightweight monitoring solutions. This work evaluates different candidate technologies to implement a monitoring platform for 5G and beyond systems in these environments. For monitoring data plane technologies, we evaluate different virtualization technologies, including bare metal servers, virtual machines, and orchestrated containers. We show that containers not only offer superior flexibility and deployment agility, but also allow obtaining better throughput and latency. In addition, we explore the suitability of the Function-as-a-Service (FaaS) serverless paradigm for deploying the functions used to manage the monitoring platform. This is motivated by the event oriented nature of those functions, designed to set up the monitoring infrastructure for newly created services. When the FaaS warm start mode is used, the platform gives users the perception of resources that are always available. When a cold start mode is used, containers running the application"s modules are automatically destroyed when the application is not in use. Our analysis compares both of them with the standard deployment of microservices. The experimental results show that the cold start mode produces a significant latency increase, along with potential instabilities. For this reason, its usage is not recommended despite the potential savings of computing resources. Conversely, when the warm start mode is used for executing configuration tasks of monitoring infrastructure, it can provide similar execution times to a microservice-based deployment. In addition, the FaaS approach significantly simplifies the code logic in comparison with microservices, reducing lines of code to less than 38%, thus reducing development time. Thus, FaaS in warm start mode represents the best candidate technology to implements such management functions.This work has been supported by EC H2020 5GPPP projects 5G-EVE and 5GROWTH under grant agreements No. 815974 and 856709, respectively

    An Integrated Edge and Fog System for Future Communication Networks

    Get PDF
    Put together, the edge and fog form a large diverse pool of computing and networking resources from different owners that can be leveraged towards low latency applications as well as for alleviating high traffic volume in future networks including 5G and beyond. This paper sets out a framework for the integration of edge and fog computing and networking leveraging on ongoing specifications by ETSI MEC ISG and the OpenFog Consortium. It also presents the technological gaps that need to be addressed before such an integrated solution can be developed. These noticeably include challenges relating to the volatility of resources, heterogeneity of underlying technologies, virtualization of devices, and security issues. The framework presented is a Launchpad for a complete solution under development by the 5G-CORAL consortium.This work has been partially funded by the H2020 collaborative Europe/Taiwan research project 5G-CORAL (grant num. 761586

    An Integrated, Virtualized Joint Edge and Fog Computing System with Multi-RAT Convergence

    Get PDF
    Notably, developing an innovative architectural network paradigm is essential to address the technical challenging of 5G applications' requirements in a unified platform. Forthcoming applications will provide a wide range ofnetworking, computing and storage capabilities closer to the endusers.In this context, the 5G-PPP Phase two project named "5GCORAL:A 5G Convergent Virtualized Radio Access Network Living at the Edge" aims at identifying and experimentally validating which are the key technology innovations allowing for the development of a convergent 5G multi-RAT access based on a virtualized Edge and Fog architecture being scalable, flexible and interoperable with other domains including transport, core network and distant Clouds. In 5G-CORAL, an architecture is proposed based on ETSI MEC and ETSI NFV frameworks in a unified platform. Then, a set of exemplary use cases benefiting from Edge and Fog networks in near proximity of the end-user are proposed for demonstration on top of connected car, shopping mall and high-speed train platforms.This work has been partially funded by the H2020 collaborative Europe/Taiwan research project 5G-CORAL (grant num. 761586

    Public and non-public network integration for 5Growth Industry 4.0 use cases

    Get PDF
    5G is playing a paramount role in the digital transformation of the industrial sector, offering high-bandwidth, reliable, and low-latency wireless connectivity to meet the stringent and critical performance requirements of manufacturing processes. This work analyzes the applicability of 5G technologies as key enablers to support, enhance, and even enable novel advances in Industry 4.0. It proposes a complete 5G solution for two real-world Industry 4.0 use cases related to metrology and quality control. This solution uses 5Growth to ease and automate the management of vertical services over a soft-ware-defined network and network function virtualization based 5G mobile transport and computing infrastructure, and to aid the integration of the verticals' private 5G network with the public network. Finally, a validation campaign assesses the applicability of the proposed solution to support the performance requirements (especially latency and user data rate) of the selected use cases, and evaluates its efficiency regarding vertical service setup time across different domains in less than three minutes.This work has been partially supported by the EC H2020 5GPPP 5Growth project (Grant 856709) and the H2020 5G-EVE project (Grant 815074)

    Multi-domain solutions for the deployment of private 5G networks

    Get PDF
    Private 5G networks have become a popular choice of various vertical industries to build dedicated and secure wireless networks in industry environments to deploy their services with enhanced service flexibility and device connectivity to foster industry digitalization. This article proposes multiple multi-domain solutions to deploy private 5G networks for vertical industries across their local premises and interconnecting them with the public networks. Such scenarios open up a new market segment for various stakeholders, and break the current operators' business and service provisioning models. This, in turn, demands new interactions among the different stakeholders across their administrative domains. To this aim, three distinct levels of multi-domain solutions for deploying vertical's 5G private networks are proposed in this work, which can support interactions at different layers among various stakeholders, allowing for distinct levels of service exposure and control. Building on a set of industry verticals (comprising Industry 4.0, Transportation and Energy), different deployment models are analyzed and the proposed multi-domain solutions are applied. These solutions are implemented and validated through two proof-of-concept prototypes integrating a 5G private network platform (5Growth platform) with public ones. These solutions are being implemented in three vertical pilots conducted with real industry verticals. The obtained results demonstrated the feasibility of the proposed multi-domain solutions applied at the three layers of the system enabling various levels of interactions among the different stakeholders. The achieved end-to-end service instantiation time across multiple domains is in the range of minutes, where the delay impact caused by the resultant multi-domain interactions is considerably low. The proposed multi-domain approaches offer generic solutions and standard interfaces to support the different private network deployment models.This work was supported in part by the European Commission (EC) H2020 5GPPP 5Growth Project under Grant 856709, and in part by the H2020 5G European Validation platform for Extensive trials (5G EVE) Project under Grant 815074

    A monitoring framework for multi-site 5G platforms

    Get PDF
    Proceeding of: 2020 European Conference on Networks and Communications (EuCNC2020), 15-18 June 2020, Dubrovnik, Croatia. (Virtual conference).The fifth generation (5G) of mobile networks will have to accommodate different types of use cases, each of them with different and stringent requirements and key performance indicators (KPIs). To support this, apart from novel technologies such as network slicing or artificial intelligence, 5G will require a flexible and efficient monitoring system. The collected metrics serve to optimize the performance of the network, and to confirm the achievement of the KPIs. Furthermore, in the envisioned multi-site, multi-stakeholder scenarios, having a common monitoring system is even more critical for an efficient optimization and service provisioning. In this paper, we present a Monitoring architecture for the distribution and consumption of metrics and KPIs for 5G multi-site platforms, where different verticals from different stakeholders are implemented over a shared infrastructure. We also assess the performance of the implemented publish-subscribe paradigm, to confirm that it suits the requirements of these scenarios, and discuss how the architecture could be mapped to other 5G scenarios.This work was partly funded by the European Commission under the European Union’s Horizon 2020 program - grant agreement number 815074 (5G EVE project).Publicad

    6G Technology Overview (third edition)

    No full text
    6G aims to address diverse, often competing needs, such as vastly increased data rates, a massive scale of communicating devices, energy efficiency, and the simultaneous demand for both high data rates and low communication latency. The White Paper covers several groundbreaking technologies pivotal for 6G evolution, such as terahertz frequencies, 6G radio access, integrated sensing and communication, non-terrestrial networks and more. For each technology, the White Paper offers background information, explains its relevance to 6G, presents key problems, and provides a thorough review of the current state of the art. The paper emphasises that while the listed technologies form the foundation for 6G, the landscape will continuously evolve. Subsequent versions of the white paper will spotlight new technologies and integrate them into a cohesive system. The “6G Technology Overview” concludes that 6G, with its vast potential, aims not only to meet the diverse requirements of novel use cases but also to ensure sustainability, user-friendliness, and ease of service deployment
    corecore